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A band theory of helicon propagation 

A. C. BAYNHAM and A. D. BOARDMANt 
Royal Radar Establishment, Malvern, Worcs. 
MS. received 11th December 1967, in rezised form 14th February 1968 

Abstract. The theory of helicon propagation in a periodic structure has been formu- 
lated. I t  assumes the plasma to be cold and collisionless, and introduces a periodic 
modulation of electron density or of external magnetic field. The  dispersion equation 
is shown to break up into bands of allowed and forbidden propagation. Numerical 
results are presented for the density modulated case, and it is seen that the band gap 
is proportional to magnetic field and that the band edges move to higher frequency 
as the magnetic field is increased. Some comments on the possibility of constructing 
a tunable filter, based on helicon propagation, are included. 

1. Introduction 
The helicon is a transverse circularly polarized plasma wave which propagates along 

an externally applied magnetic field at frequencies well below both the plasma and cyclotron 
frequencies. Since its discovery, this wave has created widespread interest because of its 
propagation characteristics. It is a slow, relatively loss-free wave, and exists throughout a 
frequency range which is readily accessible to the experimentalist. 

I n  this paper we discuss helicon propagation in a periodic structure. Experience of the 
way in which other waves behave in a periodic medium leads us to expect that the helicon 
dispersion relationship will break up into frequency bands of allowed and forbidden 
propagation. The  width of these bands can also be expected to be a function of the periodi- 
city and the magnitude of the periodic modulation. Thus a periodic structure will allow 
departures from the parabolic helicon dispersion relationship, which are determined by 
the choice of periodicity. 

The  periodic structures envisaged may be produced by modulation of either the plasma 
density or the external magnetic field. These possibilities can both be discussed using the 
analysis in $5 2 and 3. Section 4 contains numerical results for helicon propagation normal 
to the plane of a metal-semiconductor sandwich. 

2. The helicon wave equation 
The wave equation which will be derived in this section describes propagation in a 

uniform medium. The  solutions of this equation will be used in the following section to 
generate solutions appropriate to a periodic medium. 

The  plasma is assumed to be cold and collisionless: a condition which can be more 
readily approached in gaseous plasmas than in solid-state plasmas. 

T h e  linearized equation of motion of an electron of mass m and charge q, in the presence 
of a uniform external magnetic field Bo is 

av 
m- = qe+qvx Bo 

at 

where e is the electric field producing B, the first-order magnetic field perturbation, and 
v is the velocity of the particle. If all perturbations are assumed periodic in time t, with 
frequency w ,  we can re-express (2.1) as 

* . Noq2 4 .  
-ZOJ = - e + - j x B ,  

m m 

where N o  is the carrier density, and the current density j is defined as Noqv. 
7 Permanent address : Physics Department, University of Salford, Salford, Lancs. 
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The curl of equation (2.2) gives 
qBo 8.i -iw curl j = - curl e+-- 

m m ax (2.3) 

where it is assumed that Bo = (0, 0, Bo) and div j = 0 which, if we neglect the displace- 
ment current, follows from 

Following Legendy (1964) and Klozenberg, McNamara and Thonemann (1965) we elect 
to eliminate j and e from equation (2.3) with the aid of equation (2.4) and 

curl B = poj .  (2.4) 

cu r l e  = iwB (2.5) 
thereby obtaining an equation for B. We finally obtain 

a 
ax 

curl curl B - iA - (curl B) + DB = 0 (2.6) 

where A = w,/w and D = wp2/C2. w, = qBo/m is the cyclotron frequency, up2 = Noq2/m 
is the plasma frequency, E is the dielectric constant and C is the velocity of light. 

Equation (2.6) is basically the same as the one derived by the authors quoted above, 
although the present derivation proceeds from a different starting point. 

3. Bloch wave solutions 
We consider propagation, parallel to the x axis, of a helicon of wave number k, and 

introduce a step function electron density or magnetic field variation of the form shown in 
figure 1. This problem is similar to the multi-layer problems of optics, and to the well- 
known Kronig-Penney model of electron propagation in a one-dimensional periodic 
potential. 

I 1 I 1 

-b 0 o o+b 

Figure 1. Periodic modulation of magnetic field B or particle density N. 

We adopt the technique of Kronig and Penney (Dekker 1958). I t  is based upon Bloch’s 
theorem (1928), which shows that, as a consequence of periodicity, solutions of the wave 
equation for a periodic medium are of the form 

B = f&) eika (3 -1) 
where k is the propagation constant and f&) is a periodic function of x, having a period 
of a+b. This type of solution has also been used by Saunders and Baraff (1966) in a 
study of wave propagation along the interfaces of a multi-layer structure. 

Substituting equation (3.1) into the uniform-medium wave equation (2.6), which it 
must also satisfy, we obtain equations for the components fz and f, of f(x) (the suffix k is 
now dropped for convenience). These can then be solved for region I extending over 
0 < x < U and region I1 extending over a < z < a + b of the unit cell of the system. 
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Equations (2.6) and (3.1)) therefore, give 

f : f~+2ikfx’-k2fx+fA(k2fy-2~kf,f-fY’’)-~fx = 0 
(3.2) 
\ I  9 : f,” + 2ikfv’ - k2 f, + iA( - k2 f x  + 2ikf ,’ + f,”) - Df ,  = 0 

where the prime denotes differentiation with respect to z. If we define + = f x + i f y  (3.2) 
reduces to 

+“+Zik+‘+ (2- -k2)+ = 0. 
A-1 (3.3) 

Its solution is the circularly polarized helicon mode. 
The  solutions of (3 .3)  are 

+ = Pll exp{i(a: - k)z) + P12 exp{ - ;(a + k)z}, 

# = PZl exp(i(p - k)z> + PZ2 exp( - i(p + k)z), 

0 < x < a 
a < x < a + b 

(3.4) 

( 3 . 5 )  
where 

The  interface regions are assumed to be sharp. In  practice a density gradient or 
magnetic field gradient would exist over a finite region A. However, provided A is much 
less than the wavelength or the width of the unit cell it may safely be assumed that such a 
transition region can have little effect on the dispersion characteristics of the system. A 
discussion of this point can be found in Born and Wolf (1964) and Ginsberg (1964). 

The  boundary conditions at the interface between regions I and I1 of the unit cell 
are b,, by, b,’ and by’ continuous which means that + and +’ are continuous. 

These follow from standard electromagnetic theory, since the axial symmetry and 
semi-infinite transverse dimensions assumed here preclude the existence of surface currents 
at the interfaces. 

The  application of these boundary conditions together with the periodicity condition 
+( - b) = +(a) gives a set of equations which reduce to 

- 
(P”+“2)sin(/3b) sin(ota) + cos(pb) cos(sta) = cos{k(a + b)} 

2 4  
(3.7) 

Equation (3.7) is the dispersion relation describing helicon propagation, in a periodic 
structure. 

4. Numerical results 
The dispersion equation (3.7) has been solved numerically and the results are displayed 

in figure 2. 
As has been pointed out earlier in the text, the theory is particularly applicable to a 

rare-gas plasma. However, in order to emphasize the appearance of frequency bands and 
the flexibility which is now available by a suitable choice of modulation, the parameters 
chosen actually describe a typical metal-semiconductor sandwich. 

The  figure shows that the band edges occur at k = rr/(a+b), and the propagation 
bands become progressively broader as the frequency is increased. Kumerical calculations 
show that the band edges move to higher frequencies as the magnetic field is increased; 
for small changes of magnetic field the frequency axis is merely scaled by the fractional 
change. 

These features suggest the possibility of constructing tunable filters based upon helicon 
propagation in periodic structures. Such filters are required to operate at high frequencies 
where a helicon-based filter would become increasingly selective and the transducing 
problems more tractable. 
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The foregoing remarks are orientated towards solid-state plasmas where the cold 
collisionless rCgime is difficult to realize in practice. The  inclusion of collisional effects 
is not trivial. However, helicon propagation in infinite media is characterized by very 
small extinction coefficients. Therefore, since the periodicity is a design parameter it can 

Figure 2. Frequency w Hz plotted against reduced wave vector k for a magnetic field 
of 10 kc. Other parameters are a = cm; N = lo1? ~ m - ~ ,  effective 
mass = 0.1 mo for 0 < z < a ;  Ai = loQ3 cm-3, effective mass = 1 mo for a < z < a  +b. 

cm, b = 

The scale is changed, at the // mark, to w x 10 Hz. 

readily be chosen to be less than the reciprocal extinction coefficient. Under these circum- 
stances the wave amplitude is substantially unchanged between consecutive periodic 
boundaries, and the qualitative features of the theory developed in this paper are expected 
to remain unchanged in a calculation which includes scattering. 
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